My program is based on the Gapminder data set:
LIBNAME mydata "/courses/d1406ae5ba27fe300 " access=readonly;
DATA new; set mydata.gapminder;
LABEL incomeperperson="Per capita GDP"
co2emissions="CO2 emissions (in metric tons)"
urbanrate="Percentage of people in urban areas";
IF incomeperperson LE 16000;
PROC SORT; BY COUNTRY;
PROC FREQ; TABLES co2emissions urbanrate incomeperperson;
RUN;
Since the Gapminder dataset has unique quantitative values for all observations, the frequency distribution tables don't provide any insight to the data. I would therefore like to create subsets within the variables, such as per capita GDP, to group countries as lower, middle and higher income. I was not able to find a way to do this. Therefore I ran a query for countries with per capita GDP of less than and equal to 16,000 USD, which is roughly the baseline for middle and lower income countries.
Results:
co2emissions
|
Frequency
|
Percent
|
Cumulative
Frequency |
Cumulative
Percent |
132000
|
1
|
0.59
|
1
|
0.59
|
850666.66667
|
1
|
0.59
|
2
|
1.18
|
1045000
|
1
|
0.59
|
3
|
1.76
|
1111000
|
1
|
0.59
|
4
|
2.35
|
1206333.3333
|
1
|
0.59
|
5
|
2.94
|
1723333.3333
|
1
|
0.59
|
6
|
3.53
|
2251333.3333
|
1
|
0.59
|
7
|
4.12
|
2335666.6667
|
1
|
0.59
|
8
|
4.71
|
2368666.6667
|
1
|
0.59
|
9
|
5.29
|
2401666.6667
|
1
|
0.59
|
10
|
5.88
|
2907666.6667
|
1
|
0.59
|
11
|
6.47
|
2977333.3333
|
1
|
0.59
|
12
|
7.06
|
3659333.3333
|
1
|
0.59
|
13
|
7.65
|
4352333.3333
|
1
|
0.59
|
14
|
8.24
|
4774000
|
1
|
0.59
|
15
|
8.82
|
4814333.3333
|
1
|
0.59
|
16
|
9.41
|
5210333.3333
|
1
|
0.59
|
17
|
10.00
|
5214000
|
1
|
0.59
|
18
|
10.59
|
6024333.3333
|
1
|
0.59
|
19
|
11.18
|
7315000
|
1
|
0.59
|
20
|
11.76
|
7355333.3333
|
1
|
0.59
|
21
|
12.35
|
7388333.3333
|
1
|
0.59
|
22
|
12.94
|
7601000
|
1
|
0.59
|
23
|
13.53
|
7608333.3333
|
1
|
0.59
|
24
|
14.12
|
7813666.6667
|
1
|
0.59
|
25
|
14.71
|
8092333.3333
|
1
|
0.59
|
26
|
15.29
|
8231666.6667
|
1
|
0.59
|
27
|
15.88
|
8338000
|
1
|
0.59
|
28
|
16.47
|
8968666.6667
|
1
|
0.59
|
29
|
17.06
|
9155666.6667
|
1
|
0.59
|
30
|
17.65
|
14054333.333
|
1
|
0.59
|
31
|
18.24
|
14058000
|
1
|
0.59
|
32
|
18.82
|
14241333.333
|
1
|
0.59
|
33
|
19.41
|
16225000
|
1
|
0.59
|
34
|
20.00
|
16379000
|
1
|
0.59
|
35
|
20.59
|
17515666.667
|
1
|
0.59
|
36
|
21.18
|
19800000
|
1
|
0.59
|
37
|
21.76
|
20152000
|
1
|
0.59
|
38
|
22.35
|
20628666.667
|
1
|
0.59
|
39
|
22.94
|
21332666.667
|
1
|
0.59
|
40
|
23.53
|
21351000
|
1
|
0.59
|
41
|
24.12
|
22704000
|
1
|
0.59
|
42
|
24.71
|
26125000
|
1
|
0.59
|
43
|
25.29
|
26209333.333
|
1
|
0.59
|
44
|
25.88
|
28490000
|
1
|
0.59
|
45
|
26.47
|
29758666.667
|
1
|
0.59
|
46
|
27.06
|
30800000
|
1
|
0.59
|
47
|
27.65
|
32233666.667
|
1
|
0.59
|
48
|
28.24
|
35717000
|
1
|
0.59
|
49
|
28.82
|
35871000
|
1
|
0.59
|
50
|
29.41
|
36160666.667
|
1
|
0.59
|
51
|
30.00
|
37950000
|
1
|
0.59
|
52
|
30.59
|
38991333.333
|
1
|
0.59
|
53
|
31.18
|
40857666.667
|
1
|
0.59
|
54
|
31.76
|
45411666.667
|
1
|
0.59
|
55
|
32.35
|
45778333.333
|
1
|
0.59
|
56
|
32.94
|
46306333.333
|
1
|
0.59
|
57
|
33.53
|
46684000
|
1
|
0.59
|
58
|
34.12
|
49793333.333
|
1
|
0.59
|
59
|
34.71
|
51219666.667
|
1
|
0.59
|
60
|
35.29
|
52657000
|
1
|
0.59
|
61
|
35.88
|
55146666.667
|
1
|
0.59
|
62
|
36.47
|
56162333.333
|
1
|
0.59
|
63
|
37.06
|
56818666.667
|
1
|
0.59
|
64
|
37.65
|
59473333.333
|
1
|
0.59
|
65
|
38.24
|
62777000
|
1
|
0.59
|
66
|
38.82
|
69329333.333
|
1
|
0.59
|
67
|
39.41
|
73784333.333
|
1
|
0.59
|
68
|
40.00
|
75944000
|
1
|
0.59
|
69
|
40.59
|
78943333.333
|
1
|
0.59
|
70
|
41.18
|
81191000
|
1
|
0.59
|
71
|
41.76
|
86317000
|
1
|
0.59
|
72
|
42.35
|
87970666.667
|
1
|
0.59
|
73
|
42.94
|
88337333.333
|
1
|
0.59
|
74
|
43.53
|
90269666.667
|
1
|
0.59
|
75
|
44.12
|
95256333.333
|
1
|
0.59
|
76
|
44.71
|
100782000
|
1
|
0.59
|
77
|
45.29
|
102538333.33
|
1
|
0.59
|
78
|
45.88
|
104170000
|
1
|
0.59
|
79
|
46.47
|
107096000
|
1
|
0.59
|
80
|
47.06
|
109681000
|
1
|
0.59
|
81
|
47.65
|
119958666.67
|
1
|
0.59
|
82
|
48.24
|
125172666.67
|
1
|
0.59
|
83
|
48.82
|
125755666.67
|
1
|
0.59
|
84
|
49.41
|
127108666.67
|
1
|
0.59
|
85
|
50.00
|
131703000
|
1
|
0.59
|
86
|
50.59
|
132025666.67
|
1
|
0.59
|
87
|
51.18
|
143586666.67
|
1
|
0.59
|
88
|
51.76
|
148470666.67
|
1
|
0.59
|
89
|
52.35
|
149904333.33
|
1
|
0.59
|
90
|
52.94
|
168883000
|
1
|
0.59
|
91
|
53.53
|
169180000
|
1
|
0.59
|
92
|
54.12
|
170404666.67
|
1
|
0.59
|
93
|
54.71
|
170804333.33
|
1
|
0.59
|
94
|
55.29
|
183535000
|
1
|
0.59
|
95
|
55.88
|
188268666.67
|
1
|
0.59
|
96
|
56.47
|
214368000
|
1
|
0.59
|
97
|
57.06
|
223747333.33
|
1
|
0.59
|
98
|
57.65
|
225019666.67
|
1
|
0.59
|
99
|
58.24
|
226255333.33
|
1
|
0.59
|
100
|
58.82
|
228748666.67
|
1
|
0.59
|
101
|
59.41
|
234864666.67
|
1
|
0.59
|
102
|
60.00
|
236419333.33
|
1
|
0.59
|
103
|
60.59
|
242594000
|
1
|
0.59
|
104
|
61.18
|
248358000
|
1
|
0.59
|
105
|
61.76
|
253854333.33
|
1
|
0.59
|
106
|
62.35
|
254939666.67
|
1
|
0.59
|
107
|
62.94
|
275744333.33
|
1
|
0.59
|
108
|
63.53
|
277170666.67
|
1
|
0.59
|
109
|
64.12
|
283583666.67
|
1
|
0.59
|
110
|
64.71
|
300934333.33
|
1
|
0.59
|
111
|
65.29
|
310024000
|
1
|
0.59
|
112
|
65.88
|
322960000
|
1
|
0.59
|
113
|
66.47
|
340090666.67
|
1
|
0.59
|
114
|
67.06
|
377303666.67
|
1
|
0.59
|
115
|
67.65
|
428006333.33
|
1
|
0.59
|
116
|
68.24
|
446365333.33
|
1
|
0.59
|
117
|
68.82
|
487993000
|
1
|
0.59
|
118
|
69.41
|
503994333.33
|
1
|
0.59
|
119
|
70.00
|
511107666.67
|
1
|
0.59
|
120
|
70.59
|
525891666.67
|
1
|
0.59
|
121
|
71.18
|
531303666.67
|
1
|
0.59
|
122
|
71.76
|
590219666.67
|
1
|
0.59
|
123
|
72.35
|
590674333.33
|
1
|
0.59
|
124
|
72.94
|
598774000
|
1
|
0.59
|
125
|
73.53
|
692039333.33
|
1
|
0.59
|
126
|
74.12
|
953051000
|
1
|
0.59
|
127
|
74.71
|
999874333.33
|
1
|
0.59
|
128
|
75.29
|
1146277000
|
1
|
0.59
|
129
|
75.88
|
1286670000
|
1
|
0.59
|
130
|
76.47
|
1321661000
|
1
|
0.59
|
131
|
77.06
|
1414031666.7
|
1
|
0.59
|
132
|
77.65
|
1425435000
|
1
|
0.59
|
133
|
78.24
|
1436893333.3
|
1
|
0.59
|
134
|
78.82
|
1712755000
|
1
|
0.59
|
135
|
79.41
|
1718339333.3
|
1
|
0.59
|
136
|
80.00
|
1776016000
|
1
|
0.59
|
137
|
80.59
|
1839471333.3
|
1
|
0.59
|
138
|
81.18
|
1865922666.7
|
1
|
0.59
|
139
|
81.76
|
2008116000
|
1
|
0.59
|
140
|
82.35
|
2269806000
|
1
|
0.59
|
141
|
82.94
|
2329308666.7
|
1
|
0.59
|
142
|
83.53
|
2386820333.3
|
1
|
0.59
|
143
|
84.12
|
2421917666.7
|
1
|
0.59
|
144
|
84.71
|
2484925666.7
|
1
|
0.59
|
145
|
85.29
|
2670950333.3
|
1
|
0.59
|
146
|
85.88
|
2712915333.3
|
1
|
0.59
|
147
|
86.47
|
2932108666.7
|
1
|
0.59
|
148
|
87.06
|
3157700333.3
|
1
|
0.59
|
149
|
87.65
|
3341129000
|
1
|
0.59
|
150
|
88.24
|
4200940333.3
|
1
|
0.59
|
151
|
88.82
|
4244009000
|
1
|
0.59
|
152
|
89.41
|
5248815000
|
1
|
0.59
|
153
|
90.00
|
5418886000
|
1
|
0.59
|
154
|
90.59
|
5584766000
|
1
|
0.59
|
155
|
91.18
|
5675629666.7
|
1
|
0.59
|
156
|
91.76
|
5872119000
|
1
|
0.59
|
157
|
92.35
|
5896388666.7
|
1
|
0.59
|
158
|
92.94
|
6710201666.7
|
1
|
0.59
|
159
|
93.53
|
7104137333.3
|
1
|
0.59
|
160
|
94.12
|
7861553333.3
|
1
|
0.59
|
161
|
94.71
|
9183548000
|
1
|
0.59
|
162
|
95.29
|
9580226333.3
|
1
|
0.59
|
163
|
95.88
|
10822529667
|
1
|
0.59
|
164
|
96.47
|
13304503667
|
1
|
0.59
|
165
|
97.06
|
14609848000
|
1
|
0.59
|
166
|
97.65
|
23053598333
|
1
|
0.59
|
167
|
98.24
|
23404568000
|
1
|
0.59
|
168
|
98.82
|
30391317000
|
1
|
0.59
|
169
|
99.41
|
101386215333
|
1
|
0.59
|
170
|
100.00
|
Frequency Missing = 9
|
More tables:
Urbanisation rate
Per capita GDP
No comments:
Post a Comment